Multimodal Image Registration by Maximization of the Correlation Ratio

نویسندگان

  • Alexis Roche
  • Nicholas Ayache
چکیده

Over the last ve years, new voxel-based approaches have allowed important leaps in multimodal image registration, notably due to the increasing use of information-theoretic similarity measures. Their wide success has led to the progressive abandon of measures using standard image statistics (mean and variance). Until now, such measures have essentially been based on heuristics. In this paper, we address the determination of a new measure based on standard statistics from a theoretical point of view. We show that it naturally leads to a known concept of probability theory, the correlation ratio. In our derivation, we take as the hypothesis the functional dependence between the image intensities. This means that one image is considered as a model of the other. Although such a hypothesis is not validate in every circumstance, it enables us to incorporate implicitely an a priori smoothness model. We also demonstrate preliminary results of multimodal rigid registration involving Magnetic Resonance (MR), Computed Tomography (CT), and Positron Emission Tomography (PET) images. These results suggest that the correlation ratio provides a good trade-o between accuracy and robustness. Key-words: registration, medical images, multimodality, similarity measures, random variables geometry, correlation ratio. Email: [email protected] y Bien qu'ayant été enregistré au mois de mars 1998, ce rapport de recherche est resté con dentiel jusqu'à la date de sa publication, à savoir courant août 1998. Recalage d'images multimodales par maximisation du rapport de corrélation Résumé : Au cours des cinq dernières années, de nouvelles approches orientées voxel ont permis d'importantes avancées en recalage d'images multimodales, notamment grâce à l'émergence de mesures héritées de la théorie de l'information. Leur large succès a conduit à l'abandon progressif des mesures faisant appel à des statistiques standard (moyenne et variance). Jusqu'à présent, ces dernières ont été essentiellement basées sur des heuristiques. En nous plaçant dans un cadre théorique, nous proposons ici de déterminer une nouvelle mesure de similarité stantard . Nous sommes naturellement amenés à un concept classique de la théorie des probabilités, le rapport de corrélation. L'obtention du critère fait appel à une hypothèse de dépendance fonctionnelle entre les intensités des images. Cela signi e que l'une des images est considérée comme un modèle de l'autre. Bien qu'une telle hypothèse ne soit pas véri ée en toute circonstance, elle nous permet d'incorporer implicitement un modèle de continuité a priori. Pour nir, nous présentons nos premiers résultats de recalage avec des images par résonance magnétique, scannographie et tomographie par émission de positon. Ces résultats suggèrent que le rapport de corrélation est un bon compromis entre la précision et la robustesse. Mots-clés : recalage, images médicales, images multimodales, mesures de similarité, géométrie des variables aléatoires, rapport de corrélation. Registration by Maximization of the Correlation Ratio 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

ECSE 626 Project Report Multimodality Image Registration by Maximization of Mutual Information

In 1997, Maes et al. [5] was one of the first papers to propose mutual information as a similarity metric for performing multimodal image registration. More than ten years later, mutual information is now found at the core of many state-of-the-art image registration algorithms [2]. The aim of this project is to demonstrate its simplicity, accuracy, and robustness, by implementing the original a...

متن کامل

Quantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study

Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...

متن کامل

A new hybrid particle swarm optimization for mutlimodal brain image registration

Image registration is an important issue in medical analysis. In this process the spatial transformation that aligns the reference image and the floating image is estimated by optimizing a similarity metric. Mutual information (MI), a popular similarity metric, is a reliable criterion for medical image registration. In this paper, we present an improved method for multimodal image registration ...

متن کامل

Mutual information based registration of multimodal stereo videos for person tracking

Research presented in this paper deals with the systematic examination, development, and evaluation of a novel multimodal registration approach that can perform accurately and robustly for relatively close range surveillance applications. An analysis of multimodal image registration gives insight into the limitations of assumptions made in current approaches and motivates the methodology of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998